
Page 8 FoxRockX September 2017

Graphing crosstabs
A picture is said to be worth 1000 words, so it’s not surprising that a graph or
chart makes data much easier to understand. There are multiple ways to put
VFP data into a graph or chart.

Tamar E. Granor, Ph.D.

In my last article, I showed how to send crosstab
data to Excel, including how to build Excel’s Pivot
Tables programmatically. This article shows how
to create graphs of the crosstab data.
There are two straightforward ways to graph this
data. Excel has strong graphing capabilities and
includes a tool for building what are called “Pivot
Graphs.” If you need graphs inside your VFP appli-
cation, VFPX’s FoxCharts gives you what you need.

For this article, we’ll look at sales by category,
including tracking by country. Listing 1 shows the
query that collects the raw data, plus a couple of
additional columns. Figure 1 shows partial results.

Listing 1. This query collects information about sales by
product, category, year and country.
SELECT ProductName, ;
 CategoryName, ;
 YEAR(OrderDate) AS Year, ;
 ShipCountry, ;
 SUM(Quantity) AS NumSold ;
 FROM Orders ;
 JOIN OrderDetails OD ;
 ON Orders.OrderID = OD.OrderID ;
 JOIN Products ;
 ON OD.ProductID = Products.ProductID ;
 JOIN Categories ;
 ON Products.CategoryID = ;
 Categories.CategoryID ;
 GROUP BY 1, 2, 3, 4 ;
 INTO CURSOR csrProductsSold

Creating Excel’s Pivot Graphs
The Pivot Table item on Excel’s Insert tab includes a
choice of Pivot Table or Pivot Chart. Choosing Pivot
Chart lets you specify a data range and then opens
the Pivot Table Wizard with an added element for
the chart itself. As you work through the wizard,
you create both a pivot table and a graphical repre-
sentation of the data. For example, Figure 2 shows a
graph of sales by category and country; you can see
part of the pivot table behind the graph.

You create a pivot graph programmatically by
creating a pivot table and then adding a chart. The
AddChart method of the Shapes collection adds a
chart to the worksheet. It accepts five parameters.

The first is the chart type (from the xlChartType
enumeration). The other four are for positioning the
chart: left, top, width, height. Excel is smart enough
to make the chart based on the pivot table you just
created without your having to do anything special.

The code in Listing 2 creates the pivot table
and chart. The complete code (including the
query) is included in this month’s downloads as
PivotProductSales.prg. As with the examples in my
last article, the data is exported to a CSV file and
then opened in Excel. Then, a pivot cache is created
containing all the data, and used to create a pivot
table. Finally, AddChart is called. Chart type 51,
which is the default when you work interactively,
creates a vertical bar chart (which Excel calls a
“column chart”) with a separate bar for each data
point.

Listing 2. This code creates the pivot table and pivot graph
shown in Figure 2.
LOCAL cCSVFile
cCSVFile = FORCEPATH(FORCEEXT(;
 "ProductSales", "CSV"), SYS(2023))

COPY TO (m.cCSVFile) TYPE csv

LOCAL oExcel AS Excel.Application, ;
 oWorkbook as Excel.Workbook, ;
 oSheet AS Excel.Worksheet
LOCAL oPC AS Excel.PivotCache, ;
 oPT AS Excel.PivotTable
LOCAL oChart AS Excel.Chart, ;
 oRange AS Excel.Range

oExcel = CREATEOBJECT("Excel.Application")
oWorkbook = oExcel.Workbooks.Open(m.cCSVFile)
oExcel.Visible = .T.

oSheet = oExcel.Sheets.Add()
oSheet.Name = "SalesByCategoryAndCountry"

oRange = oExcel.ActiveWorkbook.Worksheets(;
 "ProductSales").UsedRange()
oPC = ;
 oExcel.ActiveWorkbook.PivotCaches.Create(;
 1, m.oRange, 4)&& 1 = xlDatabase
oPT = oPC.CreatePivotTable(;
 "SalesByCategoryAndCountry!R1C1", ;
 "PivotTable1", .T., 4)
oPT.AddDataField(oPT.PivotFields("numsold"), ;
 "Units", -4157) && xlSum

September 2017 FoxRockX Page 9

WITH oPT.PivotFields("categoryname") ;
 AS Excel.PivotField
 .Orientation = 1 && xlRowField
 .Position = 1
 .Caption = "Category"
ENDWITH

WITH oPT.PivotFields("shipcountry") ;
 AS Excel.PivotField
 .Orientation = 2 && xlColumnField
 .Position = 1
 .Caption = "Country"
ENDWITH

oChart = oSheet.Shapes.AddChart(51, ;
 150, 50, 600, 300) && 51 = xlColumnClustered

RETURN

As Figure 2 shows, pivot charts offer the same
sorting and filtering options as pivot tables. The
Category and Country dropdowns let you sort the
bars and let you filter some out based on either
their labels or their values. As described in my last
article, value filters work only on the grand total,
not the values in the individual columns.

To add a filter, call the Add method of the
 PivotFilters collection for the row or column
you want to filter on. For example, adding
the line in Listing 3 to the end of the previous
example produces the result in Figure 3. The first
parameter indicates the type of filter, based on the
xlPivotFilterType collection; 1 is a top count. (The
collection is documented at http://tinyurl.com/

ycwr2mtj.) The
second parameter
specifies the field
to apply the filter
to; here, it’s the
number of units
sold. The third
parameter is the
value for the filter;
here, we’re asking
for the top five.
The result is the
top five countries
by total units
sold. (The method
has additional
parameters not
relevant in this
case. The one
you’re most likely
to use is a second
value parameter,
for cases where
you’re filtering
for information
between two
values.) A version
of the code setting
this filter is

included as PivotProductSalesFiltered.prg in this
month’s downloads.

Figure 1. The query in Listing 1 collects data for sales of
each product by year and country, and includes the product’s
category.

Figure 2. As you create an Excel pivot graph using the wizard, a pivot table is created as well.

Page 10 FoxRockX September 2017

Li sting 3. You can fi lter the data in the pivot table and pivot
chart using the PivotFilters collection.
oPT.PivotFields("Country").PivotFilters.Add(;
 1, oPT.PivotFields("units"), 5)

If you instead add a fi lter to choose the top three
by category, as in Listing 4, you get a very different
result, shown in Figure 4 (Complete code for this
example is included in this month’s downloads as
PivotProductSalesFiltered2.prg.)

Lis ting 4. This line fi lters for the top three categories by total
sales.
oPT.PivotFields("Category").PivotFilters.Add(;
 1, oPT.PivotFields("units"), 3)

You can add multiple fi lters, resulting in reduc-
ing the data shown even more.

Creating other types of charts
Of course, you can create other types of charts and
graphs. Interactively, you right-click on the chart
and choose Change Chart Type. Programmatically,
you simply pass a different value for the fi rst
parameter of the AddChart method.

Excel offers many types of charts. In Figure 5,
some of the xlChartType enumeration is shown in
the VFP Object Browser.

The code in Listing 5 builds a pie chart
showing each category’s share of sales. (It assumes
the data has already been collected, exported
from VFP and imported into Excel. The complete
program is included in this month’s downloads as
 ProductSalesByCategoryPie.prg.) Figure 6 shows
the result.

Listi ng 5. The fi rst parameter of the AddChart method deter-
mines the type of chart.
oSheet = oExcel.Sheets.Add()
oSheet.Name = "SalesByCategoryAndCountry"

oRange = oExcel.ActiveWorkbook.Worksheets(;
 "ProductSales").UsedRange()
oPC = ;
 oExcel.ActiveWorkbook.PivotCaches.Create(;
 1, m.oRange, 4)
oPT = oPC.CreatePivotTable(;
 "SalesByCategoryAndCountry!R1C1", ;
 "PivotTable1", .T., 4)
oPT.AddDataField(oPT.PivotFields("numsold"), ;
 "Units", -4157) && xlSum
WITH oPT.PivotFields("categoryname") ;
 AS Excel.PivotField
 .Orientation = 1 && xlRowField
 .Position = 1
 .Caption = "Category"
ENDWITH

oChart = oSheet.Shapes.AddChart(70, ;
 150, 50, 600, 300) && 70 = xl3DPieExploded

With dozens of chart types, you should be able
to fi nd one that helps your users understand their
data.

Producing graphs and charts in
VFP with FoxCharts
FoxCharts is one of the premiere tools available
from VFPX, the community open source project for
VFP. It uses GDIPlusX to provide a fairly easy way
to put graphs and charts into VFP forms.

Figur e 5. VFP’s Object Browser lets you explore Excel’s
enumerations. Here, part of the list for xlChartType is shown.

Figu re 4. You can fi lter to show only the top-selling categories.

Figure 3. We can reduce the amount of data in the chart by
fi ltering.

September 2017 FoxRockX Page 11

You can install FoxCharts through Thor or
directly from VFPX’s new home on GitHub.
The direct link is https://github.com/VFPX/
FoxCharts.

While FoxCharts hasn’t been covered in depth
in FoxRockX, the download site includes a 43-page
paper from Jim Nelson. In addition, Doug Hennig has
a great paper on his website that shows you how to
get started and gives you an idea as to its capabilities:
(http://doughennig.com/papers/Pub/FoxCharts.
pdf). So I won’t go into detail on getting started.
Instead, I’ll focus on the kinds of charts you’re
likely to want to create from crosstab data.

In general, to use FoxCharts, you drop the
FoxCharts class on a form and set properties and
add code. (FoxCharts also comes with a tool that
lets you create charts interactively. You may find
that easier.) To make it easy for you to replicate
my examples, I’m doing most of the work in code
rather than setting properties of the chart and the
form in the Property Sheet.

I’ve created a form class that includes the Fox-
Charts object and names it cntChart. I’ve also added
a custom method called MakeChart to the form
and added a call to that method in the form’s Init
method, as in Listing 6. The library containing the
form class is included in this month’s downloads as
GranT060.VCX; if you use it, you’ll need to point to
the location where you’ve installed FoxCharts.

Listing 6. To encapsulate all the code that populates the chart,
the form’s Init method calls a custom MakeChart method.
This.MakeChart()

Creating a pie chart
We’ll start by replicating the pie chart from Figure
6, though technically, it doesn’t use a crosstab. The
first step is collecting the necessary data. FoxCharts
is a little finicky about its data and it’s best if the
cursor you supply contains only data you want
to graph, so this form’s MakeChart method starts
with the query in Listing 7.

Listing 7. This query collects the data needed to create a pie
chart of units sold by category.
SELECT CategoryName, ;
 SUM(Quantity) AS NumSold ;
 FROM Orders ;
 JOIN OrderDetails OD ;

 ON Orders.OrderID = OD.OrderID ;
 JOIN Products ;
 ON OD.ProductID = Products.ProductID ;
 JOIN Categories ;
 ON Products.CategoryID = ;
 Categories.CategoryID ;
 GROUP BY 1 ;
 INTO CURSOR csrProductsSold

FoxCharts lets you specify which slices should
be exploded individually by providing a column in
the underlying cursor. (There are other options for
exploding pie charts, as well. You can indicate that
a slice explodes when you click on it, or when you
click on its legend, rather than specifying a fixed
list.) So, the next step is to add that column to the
cursor, as in Listing 8.

Listing 8. The added lDetach column lets us specify which
slices of the pie should be “exploded,” that is, pulled outward
from the chart. Here, we say all should be.
SELECT *, .T. AS lDetach ;
 FROM csrProductsSold ;
 INTO CURSOR csrProductsSold

Once we have data, we set properties of the cntChart
object (as well as setting the form’s Caption). Listing
9 shows the code.

Listing 9. This code tells the FoxCharts object what type of
chart to draw, what data to use, and more.
ThisForm.Caption = "Units sold by category"

WITH This.cntChart
 .Anchor = 15
 .ChartType = 1 && Pie
 .ColorType = 0

 .SourceAlias = "csrProductsSold"

 .ChartsCount = 1
 .Fields(1).FieldValue = "NumSold"
 .FieldLegend = "CategoryName"

 .Title.Caption = 'Units Sold'
 .Subtitle.Caption = ''
 .XAxis.Caption = 'Category'
 .YAxis.Caption = 'Units sold'

 .FieldDetachSlice = "lDetach"

 .DrawChart()

ENDWITH

After setting the form caption, we anchor the
FoxCharts object to the form, so that resizing the
form resizes the chart.

Next, we indicate that we want a pie chart
(ChartType = 1) and that we should use the basic
color set (ColorType = 0).

The SourceAlias property tells the chart where
its data comes from, though it doesn’t specify which
data from the cursor to graph.

The ChartsCount property sounds like it speci-
fies how many charts you’re creating, but it actually
indicates how many data series are to be specified.

Figure 6. This chart shows the share of sales for each
category.

Page 12 FoxRockX September 2017

The value you specify is used to set the size of the
Fields collection. So, after indicating we have only
one data series (which is normal for a pie chart), we
indicate the data for that series (the NumSold fi eld
of the cursor) by setting the FieldValue property
of Fields(1), the fi rst element in the Fields collec-
tion. The FieldLegend property specifi es the fi eld in
the data source that provides the values to appear
in the legend for the chart; here, it’s the Category-
Name column.

Next, we specify a title for the chart. As you can
see, you can have both a title and a subtitle; a sub-
title seemed like overkill for this simple example.

FieldDetachSlice applies to pie charts and
indicates the fi eld in the data source that specifi es
whether a given slice should be exploded, so we
specify the lDetach column.

Finally, we call the DrawChart method to actu-
ally create the chart. The complete code for this
example is included in this month’s downloads as
CategorySalesPie.SCX. The resulting form is shown
in Figure 7.

Working with multiple data series
To graph crosstab results, we need to work with
multiple data series. Each column created by a
crosstab becomes a data series. The goal is to create
a chart similar to Figure 2; the result is shown in
Figure 8.

As in the previous example, fi rst we need to
collect the data. For this chart, we start with the
query in Listing 1, and then crosstab it. Listing 10
shows the code that creates the crosstab cursor
from the original query results; you need to either
have FastXTab in your path or add the path in this
code. Figure 9 shows partial results.

Listing 10. To create a chart showing units sold by category
and country, we need to crosstab the data.
LOCAL oXTab AS FastXTab OF "fastxtab.prg"

oXTab = NEWOBJECT("fastxtab", "fastxtab.prg")

WITH oXTab AS FastXTab OF "fastxtab.prg"
 .cOutFile = "csrXtab"
 .cRowFIELD = "CategoryName"
 .cColField = "ShipCountry"
 .cDATAFIELD = "NumSold"
 .lCursorOnly = .T.
 .lCLOSETABLE = .T.
 .RunXtab()
ENDWITH

Once we have the data, as before, we set
properties of the FoxCharts object. In this case,
we want to set ChartCount to the number of data
columns (that is, the number of countries) in
the cursor. Once we do that, we need to provide
information about each column. Listing 11 shows
the code to specify the chart; the complete program
for this chart is included in this month’s downloads
as CategorySalesByCountry.SCX.

Listin g 1 1. To create the chart in Figure 8, we need to set up a
data series for each country.
LOCAL nCountries
nCountries = FCOUNT("csrXTab") - 1

This.Caption = "Category Sales by Country"

WITH This.cntChart
 .Anchor = 15
 .ChartType = 8 && MultiBar
 .ColorType = 0

 .SourceAlias = "csrXTab"
 .FieldAxis2 = "CategoryName"
 .AxisLegend2.Rotation = -45
 .AxisLegend2.Alignment = 1 && Right

 .ChartsCount = m.nCountries

 LOCAL nSeries, nFirstDataCol
 nFirstDataCol = 2

 FOR nSeries = 1 TO m.nCountries
 WITH .Fields(m.nSeries)
 .FieldValue = FIELD(m.nSeries + ;
 m.nFirstDataCol -1)
 .Legend = .FieldValue
 ENDWITH
 ENDFOR

 .Title.Caption = 'Units Sold'
 .Subtitle.Caption = ;
 'By Category and Country'
 .XAxis.Caption = 'Category'
 .YAxis.Caption = 'Units sold'

 .DrawChart()

ENDWITH

To create a bar chart with multiple data series,
we set ChartType to 8. Bar charts have legends on
their axes, as well as an optional side legend (like
the one for the pie chart). For this chart, the Y-axis
wants numeric values representing the data; we
don’t have to specify anything for that to happen.
But the X-axis should be labelled with the category
names. That’s what we get by setting the FieldAxis2
property. The two lines after that angle the labels
and right-justify them, so they don’t overlap.

Figure 7. It takes only a little code to build this pie chart with
FoxCharts.

September 2017 FoxRockX Page 13

The key part of the code is the loop, which sets
properties of the members of the Fields collection,
based on the data columns in the crosstab. Setting
the Legend property of the fi elds specifi es that
there should be a block legend (which, in this case,
shows the colors for the countries).

Lots more options
Charts created with
FoxCharts don’t offer the
ability for live fi ltering
that Excel does, but they
can include tooltips
that show the value of
a given item when the
mouse hovers over it,
as in Figure 10. Some
chart types have other
dynamic options, as well.

FoxCharts offers
many more chart types,
as well as control over
colors and much more.

In addition, though
we’ve looked at putting
charts on forms, they
can also be printed. See
the documentation on
GitHub for details.

Final Thoughts
In this series of articles,
I’ve shown quite a few
ways to deal with cross-
tab and pivot results,
from VFP reports to vari-
ous ways of getting and
displayed them in Excel
to charting them in VFP.
I hope one of them works
for you and your custom-
ers.

Author Profi le
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other
organizations. Tamar is author or co-author of a dozen
books including the award winning Hacker’s Guide to
Visual FoxPro, Microsoft Offi ce Automation with Visual
FoxPro and Taming Visual FoxPro’s SQL. Her latest
collaboration is VFPX: Open Source Treasure for the
VFP Developer, available at www.foxrockx.com. Her
other books are available from Hentzenwerke Publish-
ing (www.hentzenwerke.com). Tamar was a Microsoft
Support Most Valuable Professional from the program's
inception in 1993 until 2011. She is one of the organizers
of the annual Southwest Fox conference. In 2007, Tamar
received the Visual FoxPro Community Lifetime Achieve-
ment Award. You can reach her at tamar@thegran-
ors.com or through www.tomorrowssolutionsllc.com.

Figure 10. By default, FoxCharts shows tooltips with data
values.

Figure 9. This is part of the data to be graphed. There’s one column for each country.

Figure 8 . This is the FoxCharts version of the bar chart showing sales by country for each category.

